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ABSTRACT  
The spatially averaged density of protein aggregates is an important parameter that can be 
used to relate size distributions measured by orthogonal methods, to characterize protein 
particles, and perhaps to estimate the amount of protein in aggregate form in a sample. We 
obtained a series of images of protein aggregates exhibiting Brownian diffusion while 
settling under the influence of gravity in a sealed capillary. The aggregates were formed by 
stir-stressing a monoclonal antibody (NISTmAb). Image processing yielded particle tracks, 
which were then examined to determine settling velocity and hydrodynamic diameter down 
to 1 µm based on mean square displacement (MSD) analysis. Measurements on 
polystyrene calibration microspheres ranging in size from 1 µm to 5 µm showed that the 
MSD diameter had improved accuracy over the diameter derived from imaged particle area, 
suggesting a future method for correcting size distributions based on imaging. Stokes’ law 
was used to estimate the density of each particle. It was found that the aggregates were 
highly porous with density decreasing from 1.080 g/cm3 to 1.028 g/cm3 as the size 
increased from 1.37 µm to 4.9 µm.  
  
Keywords: Flow imaging, Image analysis, Microscopy, Particle Sizing, Physical 
Characterization, Protein aggregates,  
 
INTRODUCTION 
The use of orthogonal methods to characterize the size distribution of protein aggregates in 
biopharmaceuticals is useful to cover broader size ranges with increased confidence. 
However, it can be difficult to reconcile results obtained through different measurement 
methods, which—based on their respective calibration and operational protocols—may 
provide seemingly conflicting results.  The spatially averaged density is a key parameter 
for comparing size distributions obtained by the resonance mass method, particle tracking, 
flow image analysis, or light obscuration.  Extracting particle diameter from a resonance 
mass measurement requires knowledge of the particle density.  Optical methods also 
depend on particle density in an indirect manner: a higher particle density corresponds to a 
higher optical scattering or image contrast, which in turn can affect the particle diameter 
measurement.  The density of protein aggregates is also important for estimating the 
amount of aggregated protein in a sample. 

 
The density of a protein (as a molecule or pure substance) has long been considered a 
parameter that is—to a good approximation—independent of the protein type, and is 
commonly used in the analysis of X-ray structure data from protein crystals. A protein 
density of 1.35 g/cm3 is a commonly accepted value based on early sedimentation1 and 
compressiblity2 measurements over a variety of different proteins)3. Quillin and Matthews3 



revised the calculation of Andersson and Hovmoller4 of the molecular volume based on the 
crystal structures for 28 proteins using coordinates from the Protein Data Bank5 to estimate 
an average density of 1.43 g/cm3. Fischer et al. reanalyzed the results obtained by Quillin 
and Matthews (2000), noting a dependence of density on molecular weight and suggesting 
proteins >30 kDa have a 1.41 g/cm3 density value6. An example application for the protein 
density value is given by Fischer et al.7, who used small angle X-ray scattering to 
determine protein volume. A protein density value based on the results from Squire et al.1 
and Gekko et al.2 (1.37 g/cm3) was then used to determine molecular weight. 
 
There is evidence that protein aggregates are porous. Sung et al. found that “TEM	revealed	
that	aggregates	were	highly	irregular	in	shape	and	porous	in	nature	suggesting	that	
their	water	content	is	substantial8.”	This would suggest an average density lower than the 
value for pure protein. There are several reports of researchers using aggregate density to 
estimate the amount of protein in an aggregate based on imaging results. Wuchner et al. 
assumed a value of 1.3 g/cm3 for the density. They note the uncertainty resulting from such 
an assumption: “By applying a hard sphere model to calculate the weight percent of protein 
particles (an approximation since the protein particles are heterogeneous in nature), these 
calculations may be an overestimate of their mass9.” Barnard et al. 10 combined the pure 
protein density value from Quillin and Matthews3 (1.43 g/cm3) with an estimate that 
aggregates are 25 % by volume water, resulting in an estimated aggregate density of 1.32 
g/cm3. Kalonia et al.11 combined the pure protein value from Fischer et al. 6 (1.41 g/cm3) 
with an estimate that aggregates are 80 % by volume water, resulting in an estimated 
aggregate density of 1.08 g/cm3.  
 
Recently, Folzer et al. sought to measure protein aggregate densities for the purpose of 
converting protein aggregate resonance mass measurements to an equivalent spherical 
diameter12. Using cesium chloride solutions of varying concentrations, they measured the 
buoyant mass of particles using the resonance mass method as a function of solution 
density. It was assumed that the particle density is equal to the solution density where the 
linear fit of the data passes through zero buoyant mass. This procedure yielded excellent 
values for the density of calibration microspheres. For protein aggregates, however, it 
neglects the possibility that the particles may be porous, and that the altered density fluid—
as it penetrates the pores of the particle—changes the total mass of the aggregate. The 
resulting density from this measurement is actually (Mass)/(Non-Buffer-Accessible 
Volume), and not the average density of the particle (Mass)/(Total Volume) in the 
formulation buffer. The measured values ranging from 1.28 g/cm3 to 1.33 g/cm3 correspond 
to the density of the non-buffer-accessible portion of the particle, which is closer to the 
value for pure protein. 
 
In this work, we seek to measure the sedimentation velocity of protein aggregates settling 
in solution under the influence of gravity while simultaneously measuring the particle size. 
Similar measurements have been reported for other types of particles. Bach et al. performed 
sinking velocity measurements of various phytoplankton species using a flow imaging 
system (FlowCam) outfitted with glass cuvettes13. The equivalent spherical diameter (ESD) 
was obtained from the instrument’s software determination of the area of imaged particles, 
while the velocity was obtained by tracking the particles using a MATLAB script. Sediq et 



al. used a FlowCam to perform sedimentation and size measurements on Poly lactic-co-
glycolic acid (PLGA) particles and polystyrene microspheres ranging in size from 30 µm to 
70 µm14. PLGA is a biodegradable copolymer used for drug delivery or biomaterial 
applications. Falling velocity measurements in fluids of different densities were used in 
combination with the imaged size to determine particle density. The porous PLGA particles 
were in dried form prior to being added to the fluid, so the pores of the particles were 
assumed to be filled with air. Average densities of 0.8 g/cm3, 1.0 g/cm3, and 1.3 g/cm3 were 
observed for three different batches of the PLGA. Zhao et al. measured the density of yeast 
cells by observed the falling velocity of cells from a top view and using an optical 
electrokinetics platform15. Cells on a bottom photoconducting electrode were propelled 
upward towards an upper transparent conducting electrode when an illumination source 
was activated.  Switching off the illumination allowed the cells to sediment under gravity. 
By comparing the out-of-focus images obtained during sedimentation to calibrated images 
prepared prior to the light pulse, the vertical trajectory was obtained. Estimated densities 
for the cells ranged from 1.04 g/cm3 to 1.13 g/cm3. 
 
In the measurements reported here, we use a configuration similar to Bach et al. 13 and 
Sediq et al. 14. The aggregates—formed by stir-stressing NISTmAb— primarily produced 
particles below 5 µm in diameter. In this size range, size measurements based on particle 
image are prone to diffraction and out-of-focus effects. Instead, we used the tracked 
diffusive motion of the particle to obtain the equivalent spherical hydrodynamic diameter. 
By simultaneously imaging the particles, we were able to obtain a direct comparison 
between the image sizing and Brownian motion sizing methods for our experimental 
arrangement. Combined with the measurement of the average sedimentation velocity, we 
obtain the spatially averaged density difference between the liquid and settling particle. 
This density difference is equal to the buoyant mass (mass of protein material plus trapped 
liquid minus mass of displaced liquid) divided by the hydrodynamic volume.  The average 
particle density is the sum of this measured density difference and the liquid density. 
 

 
MATERIALS AND METHODS 
 
Materials 
 
Polystyrene microspheres nominally 1.0 µm, 2.0 µm, 3.0 µm, and 5.0 µm in diameter were 
obtained in aqueous suspensions from the line of Thermo Scientific™ Duke Standards™ 
2000 Series Uniform Polymer Particles (ThermoFisher, Grand Island, NY). (Certain 
commercial products and instruments are identified to adequately describe the experimental 
procedure in this paper. In no case does such identification imply endorsement by the 
National Institute of Standards and Technology.) The microspheres were diluted in 
ultrafiltered, deionized water (Barnstead Nanopure system, Dubuque, IA). The water 
density was measured using a Laboratory Density Meter Model DDM 2911 (Rudolph 
Research Analytical, Hackettstown, NJ). The value was 0.997051 g/cm3 at 25 °C with a 
standard deviation of 0.000002 g/cm3. To consider if there were any concentration-
dependent effects, samples were made with concentrations ranging from 1x106 ml-1 to 
33x106 ml-1.  



   
 
The NISTmAb is a monoclonal antibody available as reference material (RM 8671) from 
NIST16. A vial of RM 8671 contains 800 µL of 10 mg/mL IgG1κ (molecular mass »150 
kDa), a monoclonal antibody in histidine buffer: 12.5 mmol/L L-histidine and 12.5 mmol/L 
L-histidine HCl (pH 6.0). The stock NISTmAb was diluted to 1 mg/mL in histidine buffer 
and stressed by stirring for two hours as described previously by Joubert et al.17 to create 
aggregates. The buffer density was measured to a value of 0.998817 g/cm3 at 25 °C with a 
standard deviation of 0.000039 g/cm3.  
 
Experimental Methods 
 
A schematic of the imaging setup is shown in Figure 1 a. Samples were drawn into 
rectangular-cross-section glass capillaries (VitroCom, Mountain Lakes, NJ) by capillary 
action. The glass capillaries have inner dimensions of 0.05 mm x 0.5 mm x 50 mm, and are 
sealed at both ends with silicone high vacuum grease.  This sealing substance (Dow 
Corning Corporation, Auburn MI 48611) is water insoluble, is commonly used for sealing 
coverslips for microscopy applications, and had the advantage that imaging could begin 
immediately after sealing, which was important for protein aggregates that eventually 
would adhere to the capillary walls. No evidence of leaching of the sealant into the tube 
was observed, and the results were similar to other sealing methods we also evaluated 
(Room-Temperature-Vulcanizing silicone glue, epoxy). A flow imaging system (FlowCam, 
Fluid Imaging Technologies Inc., Yarmouth, ME) was modified to replace the flow-
through system with a glass capillary. The use of the glass capillary was critical to ensure 
there was no convective fluid flow during the long settling measurements. The FlowCam 
used for these experiments features an open component layout; the lid on the instrument 
was closed during measurements to mitigate thermal gradients that could cause convection. 
Subsequent image sorting along the x-axis revealed no evidence of convection or non-
uniformity. The temperature was measured during each run with a type K thermocouple 
(Model DP462, Omega Eng. Inc., Norwalk, CT) and was used to obtain the viscosity based 
on the temperature dependence of the viscosity of water18.  Images were collected as the 
particles settled in the glass capillary. The system was configured with 20× magnification 
using a lens that was modified by temporarily gluing a 2.5 mm aperture to the rear of the 
objective to increase the depth of field. This modification reduced the possibility of 
particles drifting out of focus during long tracking measurements. The use of a 20× 
objective also results in greater spatial resolution (compared to a 10× objective), and thus 
more precise MSD and settling velocity values. The images were 1294 pixels x 964 pixels 
(362 µm x 270 µm.) Time-stamped images were typically acquired at a rate of 1 frame per 
second.  It was useful to acquire runs of 2000 s or longer to obtain tracks that have a falling 
velocity displacement that represents a significant component of the total vertical 
displacement when compared to the Brownian diffusion contribution. The low acquisition 
speed reduced the obtained quantity of data to a manageable level. There was little wall 
adhesion during measurements of the calibration microspheres, allowing runs as long as 
16000 s to analyze a larger number of particles. However, the protein aggregate samples 
exhibited significant adhesion to the capillary walls after about 2000 s, therefore, multiple 



runs with freshly loaded capillaries were studied. Reported here are the results from 17 
separate NISTmAb-loaded capillaries. 
 
Images were analyzed using the NIST “Variable Threshold” algorithm, which improves 
boundary definition for samples with particles of widely varying contrast19. An example of 
some processed images is shown in Figure 1 b. The software implementing this algorithm, 
FIJI20, is a freely available derivative of ImageJ21 preloaded with additional plugins. The 
software removes the background by taking the median of a set of images and subtracting 
that median image from each image19. The software produces a table of data that includes 
particle center of mass coordinates, radius, and mean brightness. The results were 
converted by a program (Supplementary Information) to a file in a format usable by 
Trackmate22—an open source plug-in for FIJI—which was used to identify particle tracks. 
Trackmate was modified to export data that included particle radius and mean brightness 
(Supplementary Information). Tracks ranged in length up to 6986 steps (1 s per step) for 
single 1 µm microspheres. Tracks less than 50 steps were removed from analysis. Tracks in 
which the particle is adhered to the capillary walls at the end of the track were also 
removed from analysis, as these tracks might be affected by wall effects that would modify 
calculated properties. For the microspheres, size and circularity filtering of the tracks was 
performed so that only monomers of the analyzed spheres were analyzed. Filtering of 
tracks was not employed for the protein aggregate samples. When one track intersected 
another track, both tracks were deemed ended.  The total number of tracks analyzed for 
both microspheres and aggregates are shown in Table 1. 
 
Track Analysis 
 
a. Determination of hydrodynamic diameter from Brownian motion 

 
The analysis to determine particle size is similar to what is used in nanoparticle tracking 
analysis (NTA); the main difference is that the particle’s coordinates are based on the 
particle image, rather than the light scattering distribution. Tracks were analyzed using a 
mean-square-displacement (MSD) algorithm to calculate a hydrodynamic diameter23-25 and 
a settling velocity. The program is supplied in the Supplementary Information. For each 
particle, the MSD was calculated over the first n time intervals between measurements25. 
For this work, n was chosen as 10, which gave good results for particle diameters ranging 
from 1 µm to 10 µm. For a two-dimensional diffusion process, the MSD scales according 
to: 

 
𝑀𝑆𝐷(𝜏) = 4𝐷𝜏 ,     (1) 
 

where D is the diffusion coefficient and τ is the time interval between measurements. MSD 
is calculated by the following: 
𝑀𝑆𝐷(𝑡) = 	 〈[𝑟(𝑡) − 𝑟(0)]1〉   (2) 

where r is the two-dimensional position of the particle and t is the timestamp for the 
position measurement. A linear fit to the results from Equation 2 is used to extract the 



diffusion coefficient, D, which can then be used to determine diameter, d, using the Stokes-
Einstein equation 

 

𝑑 = 45
6789

 .       (3) 
 
b. Determination of density difference from sedimentation velocity 
 
We apply Stokes’ Law to a falling sphere in liquid to estimate the density difference 
between the spatially averaged protein aggregate and the buffer solution. For a sphere, 
 

Δ𝜌 = <=8>
?@A

 ,       (4) 
 

where Dr is the difference in density between the particle and buffer, h is the viscosity, g is 
the gravitation constant 9.8 m/s2, d is obtained from Equation (3), and the velocity v was 
obtained from a linear fit of the vertical position as a function of time.  
 
Deviations from Stokes’ Law due to wall effects and non-sphericity can be accounted for 
by generalizing Equations 3 and 4 cases to: 
 

𝑑B = 45
6789CD

  ,       (5) 

 

Δ𝜌B = <=8>CD
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 ,       (6) 

 
where d (in Equation 6) represents the diameter of an equivalent volume sphere,  l is the 
wall factor 13,26 approximated by a model in which particles are falling midway between 
two semi-infinite walls separated by a distance L: 
 

𝜆 = <
<F@/H

        (7) 

 
and χ is the dynamic shape factor27 which can be approximated as,  
 

𝜒 = @JK1@L
6@

 ,       (8) 
 
 
with dn and ds the equivalent circular diameter of the particle’s projection normal to its 
motion and the equivalent diameter of a sphere with the same surface area as the particle, 
respectively. The wall factor l was included in our calculations, and found to have a 10 
percent effect for particles with d ≈ 5 µm, with reduced effect as d decreases. The value of 
χ was estimated for a variety of non-spherical shapes. For prolate/oblate spheroids with a 



0.5 aspect ratio, χ = 0.96 if the long axis is parallel to the flow, and χ = 1.07 if the long axis 
is perpendicular to the flow. Particles were observed to tumble during sedimentation, so χ 
is effectively averaged over the path.  Because the vast majority of particles had an aspect 
ratio >0.5, we did not include corrections for shape in the analysis. 
   
RESULTS & DISCUSSION 
 
Figure 2 shows examples of tracks obtained for the 1 µm to 5 µm diameter microspheres 
(Figure 2 a-d) and for the protein aggregates (Figure 2 e). For the 1 µm diameter 
microspheres in Figure 2 a, a selection of tracks longer than 4000 s is shown. These tracks 
exhibit substantial diffusive motion in combination with a net vertical displacement 
resulting from sedimentation. As the microsphere size increases, the net diffusive motion is 
reduced compared to the net vertical motion. For the 5 µm diameter microspheres in Figure 
2 d—where tracks longer than 300 s are shown—the motion is primarily settling with a 
small amount of diffusive motion still evident in the track. This trend is due to the 
increased mass of the larger particle, which gives rise to a d2 dependence of the settling 
velocity according to Stokes’ law. Thus, for the smallest microsphere size, the challenge 
was to obtain good statistics for falling velocity measurement, while for the largest (5 µm) 
diameter microspheres, the challenge was to obtain good statistics for Brownian motion 
analysis for size measurement. Meeting these issues at the size extremes explains the 
variation in the number of tracks we analyzed at different bead sizes as shown in Table 1. 
  
The protein aggregate tracks in Figure 2 e—where tracks longer than 200 s are shown—
exhibit a variety of trajectories. Some of these trajectories resemble the 1 µm diameter 
microsphere tracks with substantial diffusion, while others resemble the 5 µm diameter 
microspheres dominated by settling motion. 

  
Following MSD analysis of the tracks, key results were tabulated, including MSD diameter 
d, average equivalent spherical diameter from the image dI, settling velocity v, density 
difference Dr (a function of d and v), and density difference DrI  (a function of dI and v).  
Tracks were sorted according to path length and histograms of the parameters for different 
path lengths were plotted. Some examples are shown in Figures 3 and 4.   
 
For the 1 µm diameter microspheres, the MSD diameter distribution (Figure 3a) narrows 
with increasing path length. The microspheres do not become more monodisperse with 
increasing path length, but rather as there is more data in the longer paths, the precision of 
the measurement is improved. The median of the distributions is approximately 1 µm. In 
contrast, the medians for the distributions of the imaged diameters (Figure 3 b) are around 
2.9 µm and the distribution widths have little dependence on path length.  The discrepancy 
between the imaged diameter and known microsphere diameter is due to the aperture on the 
20× lens used to increase the depth of field at the expense of increasing out-of-focus and 
diffraction effects. These effects affect the variable threshold algorithm. In flow imaging, it 
is typical that raw images of calibration microspheres will result in oversizing, and 
corrections can be made for this effect28. The velocity distribution (Figure 3 c) narrows for 
longer track lengths. Note that some particles exhibit negative velocity, especially for 
shorter track lengths. For these particles, the Brownian diffusion in the y-direction exceeds 



the net settling displacement. Because the Brownian displacement is proportional to t1/2 and 
the settling displacement is proportional to t—where t refers to the track length in seconds 
in this context—the settling displacement will eventually overtake the random Brownian 
displacement. Nevertheless, the medians of these distributions are meaningful and yield the 
average settling velocity for the 1 µm diameter microspheres.  
 
For the 5 µm diameter microspheres, the increased mass and settling velocity reduces the 
time that a particular microsphere is in the field of view. In addition, the Brownian motion 
component is smaller in each time step, so there is less information to calculate the MSD 
diameter. This reduced information results in a larger MSD diameter spread, compared to 
the 1 µm diameter microspheres (Figure 4 a) and set a diameter value of 5 µm as an upper 
limit for MSD analysis of size in this experimental arrangement. We note that NTA and 
dynamic light scattering (DLS) face similar difficulties at larger sizes. Brownian motion 
has little effect on the net vertical displacement, resulting in a distribution that is 
determined by the settling velocity (Figure 4 c).  The more rapid descent of particles 
through the field of view limits the track lengths to less than 500 s.  
 
Based on the distributions obtained for all microsphere sizes, we used the following criteria 
for including tracks in the calculation of median values for important parameters: 
 
d ≤ 4 µm; Track length > 300 s 
d > 4 µm; Track length > 200 s. 
Results did not depend strongly on these criteria. For example, for nominal 2 µm diameter 
microspheres, with track length minima set to 50, 200, 300, 500, and 1000, we obtain 
median MSD diameters of 2.07 µm, 1.99 µm, 1.97 µm, 1.95 µm, and 1.94 µm; and median 
densities difference values of  0.0433 g/cm3, 0.0468 g/cm3, 0.0472 g/cm3, 0.0474 g/cm3, 
and 0.0468 g/cm3, respectively. 

 
The range of concentrations of the microspheres was explored to determine any effect of 
concentration (i.e. particle-particle interactions) on the results. The number of particles per 
frame ranged from 10 to 160. At the higher concentrations, there were a higher fraction of 
tracks with shorter lengths. This is due to the higher probability of tracks crossing, which, 
as mentioned above, ended the track for the purpose of analysis. Other than that, there was 
no effect on key results (MSD diameter, median image diameter, average density 
difference, etc.) for the range of concentrations measured.  
 
Figure 5 shows the histograms of MSD diameters for protein aggregate data sorted by track 
length. This data represents tracks from 17 separate runs. As size is reduced below ≈1.5 µm, 
the number of particles in the distributions rapidly declines. This is a result of the 
measurement, not a reflection of the aggregate size distribution in the sample. Protein 
aggregates of this size are harder to detect by microphotography, as they approach the 
optical limits of detection and the small difference in the index of refraction with respect to 
the buffer make the particles even harder to detect29. Tracks of varying lengths were 
evaluated according to the above rule for microspheres. These tracks were then sorted by 
MSD size into 1 µm wide bins (i.e., from 0.5 µm to 1.5 µm, from 1.5 µm to 2.5 µm, and so 
on) with the aim of testing whether the average particle density is size-dependent or not.  



 
As noted previously for the microspheres, the imaged size exceeds the calculated MSD size. 
Figure 6 shows results for the median imaged equivalent circular diameter (ECD) dImage vs. 
the median MSD diameter dMSD for both the microspheres and the protein aggregates, along 
with a dashed line showing dImage =dMSD. Also in Figure 6 are quadratic fits for dMSD as a 
function of dImage: 
 
𝑑MN9 = 𝑎P + 𝑎<𝑑RSTUV + 𝑎1𝑑RSTUV1                                       (9) 
 
The fit parameters a0, a1, and a2 for the two sets of data are shown in Figure 6. These fits 
could be used to correct an image diameter to the MSD diameter. In commercial 
instruments it is common to use a relation based on images collected from calibration 
microspheres in a properly tuned instrument, to yield a diameter that will obtain a correct 
value when imaging similar microspheres under the same conditions. The different fits in 
Figure 6 for aggregates compared to microspheres, show that fit parameters obtained from 
calibration beads would not yield optimal values when applied to images of protein 
aggregates. This is not surprising given the differences between the index of refraction for 
protein aggregates and polystyrene microspheres28,29. Note that the fit parameters in Figure 
6 would only apply to the optical setup used in this experiment, which includes an aperture 
on the 20× lens designed to increase the depth of field for optimal particle tracking. It may 
be challenging—but possible—to obtain tracks of sufficient information content without 
the 2.5 mm aperture and with a 10× lens to obtain a more generalizable transformation 
function, but this was outside the scope of this work. 
 
The median density difference Dr—calculated using both the MSD diameter and the 
imaged ECD—for the microspheres as a function of the MSD diameter is shown in Figure 
7 along with a horizontal line representing the microsphere manufacturer’s reported density 
of 1.050 g/cm3 (which shows as a Dr = 0.050 g/cm3). The results for the MSD-calculated 
density are approximately independent of microsphere size and in reasonable agreement 
with the manufacturer’s given density, which serves as a reasonable validation of our 
experimental approach. As expected, the density calculated using the imaged ECD is 
substantially lower due to the significant oversizing effect evident from Figure 6.  
 
The results for the dependence of aggregate average density on MSD-calculated size are 
shown in Figure 8 a, along with the results from polystyrene microspheres. As mentioned 
above, the data from Figure 5 was sorted into 1 µm wide bins, and the median density 
difference vs. the median MSD diameter is plotted for each bin. The error bars represent 
the standard error of the mean for each bin. The data shows the aggregate density 
difference decreases with increasing particle size, with a value of Dr=0.081 g/cm3 at 1.37 
µm and a value of Dr=0.029 g/cm3 at 4.9 µm. Based on the measured density of the buffer 
solution (0.998817 g/cm3), this gives a value for the average particle density of 1.080 g/cm3 

at 1.37 µm and a value of 1.028 g/cm3 at 4.9 µm. If we assume the molecular density of the 
protein is 1.41 g/cm3 (1410 kg/m3) 6, our results suggest that the fraction of water in the 
stir-stressed NISTmAb aggregates ranges from 80 % at 1.37 µm to 93 % at 4.9 µm. These 
results indicate a lower density than has generally been assumed for subvisible particles, 



and also suggests that when attempting to correlate resonance mass results with particle 
tracking or flow imaging—or when trying to estimate the amount of protein in aggregate 
form— a density in the range of 1.028 g/cm3  to 1.080 g/cm3  should be considered. 
Optimally, it may be necessary to consider the size-dependence of protein aggregate 
density. There may be differences in density based on the particular protein, stress method, 
and concentration of the protein monomer and excipients, which would be of interest for 
further study. We note that there may be some bias in the result for the lowest size bin (i.e., 
0.5 µm to 1.5 µm). As mentioned in connection with Figure 5, we lose detection of the 
smaller particles more often (thus the median size for this bin is 1.37 µm) and, presumably, 
also particles with lower optical contrast (and therefore lower density). The result is that the 
density value 1.080 g/cm3 at 1.37 µm may be seen as an upper bound. The density increase 
with decreasing size should not be surprising. Eventually, as the size regime moves down 
to the molecular scale, (dimers, trimers, etc.) the density will approach the pure protein 
density value (1.41 g/cm3)6.  In addition, we note that if the particle porosity allows liquid 
to flow through the particle during settling, this will enhance the sedimentation rate, thus 
causing the particle to appear to have a higher density. This is more likely for the larger 
particles, which would also suggest the value we obtain for 3 µm and above should be 
considered an upper bound.  
 
Our results for Dr can be compared with recent determinations of the average refractive 
index of aggregated proteins28,30.  The difference in refractive index, Dn, of a particle 
relative to the matrix fluid is related to the difference in protein concentration, Dc, of the 
particle relative to the matrix fluid: 
 
D𝑐	 = 	D𝑛	/	(d𝑛/d𝑐)	,      (10) 
 
where dn/dc refers to the refractive index increment and has a value of » 0.189 cm3/g 31. 
The relationship between Dr and Dc can be found using the fundamental definitions of 
these quantities. Suppose a quantity of protein of mass mp and volume Vp are combined 
with a quantity of buffer of mass mb and volume Vb to form a protein particle, and that the 
solution is ideal so that the combined particle volume is the sum Vb + Vp.  Then, 
 
Dr = r[ − r\ =

]^K]_

`̂ K`_
− ]_

`_
	,     (11) 

 
∆𝑐 = ]^

`̂ K`_
	,        (12) 

 
where rp and rb are the densities of the dry protein (1.41 g/cm3) and the buffer (1.0 g/cm3), 
respectively. Solving for Dc, 
 
∆𝑐 = ∆b

<Fb_ b^c
	.        (13) 

 
 



Combining Eqs. 10 and 13: 
 
∆𝜌 = 1.54	∆𝑛	g/cm3.       (14) 
 
Literature results for Dn values of protein aggregates formed by agitating polyclonal human 
IgG—in comparison to NISTmAb28—have been converted to Dr and included in Figure 8 
b.  These values were obtained using quantitative phase imaging, which has poor accuracy 
for d < 5 µm due to the large correction factors and the difficulty in defining particle 
diameter. Even though the protein is different, the agreement with the more precise 
sedimentation results is quite good.  Also shown are results based on a holographic 
determination of Dn30.  These measurements—based on yet a third protein (bovine pancreas 
insulin)—demonstrate the same conclusions; that protein aggregates are highly hydrated 
and that Dr climbs rapidly with decreasing particle diameter. Although our tracking 
method relies on photomicrographs, the determination of particle diameter and settling 
velocity does not rely on image analysis for particle dimensions, only for particle location.  
For that reason, the present results provide an orthogonal method to current image-analysis 
methods.  

 
Observing that—even with monodisperse microspheres—the sedimentation/MSD analysis 
method used in this experiment results in apparent density distributions (as shown in Figure 
3), we nevertheless sought to discern if there is a spread in densities among similarly-sized 
protein aggregates. To do this, we sampled protein aggregates of MSD-analyzed diameters 
from 1.8 µm to 2.2 µm. We did not observe enough size variation to significantly affect the 
density (as seen in Figure 8). We considered only tracks longer than 1000 steps for which 
error in the MSD size is reduced and the distribution has a better chance of reflecting 
something about the actual size distribution in the sample. This was also a diameter range 
where there were enough particles (177) to construct a density histogram. Figure 9 shows a 
comparison of this data with microspheres also sampled from measured diameters ranging 
from 1.8 µm to 2.2 µm (of which there were 624 particles). Note that we normalized the 
histograms to the total number of particles to allow for easy comparison. It is evident that 
the width of the protein aggregate density distribution is greater than that of the 
monodisperse polystyrene microspheres, suggesting that there is a real distribution of 
densities among aggregates of the same size.  

 
CONCLUSIONS 
 
In this work, we measured a spatially averaged density for protein aggregates by obtaining 
the sedimentation velocity and equivalent spherical hydrodynamic diameter based on mean 
square displacement analysis of particle tracks. Measurements using calibration 
microspheres suggest that the average results from a large number of particles correspond 
to the expected diameter and density of the microspheres. We find that tracking analysis is 
applicable up to sizes of 5 µm for an apparatus optimized for the micrometer size regime. 
MSD analysis of particle tracks—for which particle images are also acquired—may be 
used to correct for diffraction/out-of-focus effects in the particle images. The resulting 
relationships between imaged size and hydrodynamic size were shown to be different for 
polystyrene microspheres than for protein aggregates, likely due to differences in the index 



of refraction. It may prove feasible to perform such correlation measurements using a flow 
microscopy instrument with conventional optics, rather than the altered configuration used 
in this work to optimize the density measurement. We found that the stir-stressed 
NISTmAb produced aggregates with average densities that decreased with hydrodynamic 
diameter: from 1.080 g/cm3 at 1.37 µm to 1.028 g/cm3 at 4.9 µm. These densities 
correspond to water fractions ranging from 80% to 93%. Finally, we found that there is a 
statistically significant broadening of the protein aggregate density distribution in the 1.8 
µm to 2.2 µm range due to variation among the particles. 
 
ACKNOWLEDGEMENTS 
 
Thanks to Michael Carrier and John Schiel of the NIST Biomolecular Measurement 
Division for assistance with computer upgrades and for providing a sample of NIST 
reference material RM 8671, respectively. We would also like to acknowledge Sherry D. 
Scheckels of the NIST Physical Measurements Division for measurements of water and 
buffer density. 
 

 
REFERENCES 
 
 
 
1.	 Squire	PG,	Himmel	ME	1979.	Hydrodynamics	and	Protein	Hydration.	Arch	
Biochem	Biophys		196(1):165-177.	
2.	 Gekko	K,	Noguchi	H	1979.	Compressibility	of	Globular-Proteins	in	Water	at	
25-Degrees-C.	J	Phys	Chem-Us		83(21):2706-2714.	
3.	 Quillin	ML,	Matthews	BW	2000.	Accurate	calculation	of	the	density	of	
proteins.	Acta	Crystallographica	Section	D		56(7):791-794.	
4.	 Andersson	KM,	Hovmoller	S	1998.	The	average	atomic	volume	and	density	of	
proteins.	Z	Kristallogr		213(7-8):369-373.	
5.	 Bernstein	FC,	Koetzle	TF,	Williams	GJB,	Meyer	EF,	Brice	MD,	Rodgers	JR,	
Kennard	O,	Shimanouchi	T,	Tasumi	M	1977.	Protein	Data	Bank	-	Computer-Based	
Archival	File	for	Macromolecular	Structures.	J	Mol	Biol		112(3):535-542.	
6.	 Fischer	H,	Polikarpov	I,	Craievich	AF	2004.	Average	protein	density	is	a	
molecular-weight-dependent	function.	Protein	Sci		13(10):2825-2828.	
7.	 Fischer	H,	Neto	MD,	Napolitano	HB,	Polikarpov	I,	Craievich	AF	2010.	
Determination	of	the	molecular	weight	of	proteins	in	solution	from	a	single	small-
angle	X-ray	scattering	measurement	on	a	relative	scale.	J	Appl	Crystallogr		43:101-
109.	
8.	 Sung	JJ,	Pardeshi	NN,	Mulder	AM,	Mulligan	SK,	Quispe	J,	On	K,	Carragher	B,	
Potter	CS,	Carpenter	JF,	Schneemann	A	2015.	Transmission	Electron	Microscopy	as	
an	Orthogonal	Method	to	Characterize	Protein	Aggregates.	J	Pharm	Sci-Us		
104(2):750-759.	
9.	 Wuchner	K,	Buchler	J,	Spycher	R,	Dalmonte	P,	Volkin	DB	2010.	Development	
of	a	Microflow	Digital	Imaging	Assay	to	Characterize	Protein	Particulates	During	



Storage	of	a	High	Concentration	IgG1	Monoclonal	Antibody	Formulation.	J	Pharm	
Sci-Us		99(8):3343-3361.	
10.	 Barnard	JG,	Singh	S,	Randolph	TW,	Carpenter	JF	2011.	Subvisible	Particle	
Counting	Provides	a	Sensitive	Method	of	Detecting	and	Quantifying	Aggregation	of	
Monoclonal	Antibody	Caused	by	Freeze-Thawing:	Insights	Into	the	Roles	of	Particles	
in	the	Protein	Aggregation	Pathway.	J	Pharm	Sci-Us		100(2):492-503.	
11.	 Kalonia	C,	Kumru	OS,	Prajapati	I,	Mathaes	R,	Engert	J,	Zhou	SX,	Middaugh	CR,	
Volkin	DB	2015.	Calculating	the	Mass	of	Subvisible	Protein	Particles	with	Improved	
Accuracy	Using	Microflow	Imaging	Data.	J	Pharm	Sci-Us		104(2):536-547.	
12.	 Folzer	E,	Khan	TA,	Schmidt	R,	Finkler	C,	Huwyler	J,	Mahler	HC,	Koulov	AV	
2015.	Determination	of	the	Density	of	Protein	Particles	Using	a	Suspended	
Microchannel	Resonator.	J	Pharm	Sci-Us		104(12):4034-4040.	
13.	 Bach	LT,	Riebesell	U,	Sett	S,	Febiri	S,	Rzepka	P,	Schulz	KG	2012.	An	approach	
for	particle	sinking	velocity	measurements	in	the	3-400	mu	m	size	range	and	
considerations	on	the	effect	of	temperature	on	sinking	rates.	Mar	Biol		159(8):1853-
1864.	
14.	 Sediq	AS,	Waasdorp	SKD,	Nejadnik	MR,	van	Beers	MMC,	Meulenaar	J,	Verrijk	
R,	Jiskoot	W	2017.	Determination	of	the	Porosity	of	PLGA	Microparticles	by	Tracking	
Their	Sedimentation	Velocity	Using	a	Flow	Imaging	Microscope	(FlowCAM).	Pharm	
Res-Dordr		34(5):1104-1114.	
15.	 Zhao	YL,	Lai	HSS,	Zhang	GL,	Lee	GB,	Li	WJ	2014.	Rapid	determination	of	cell	
mass	and	density	using	digitally	controlled	electric	field	in	a	microfluidic	chip.	Lab	
Chip		14(22):4426-4434.	
16.	 Schiel	JE,	Davis	DL,	Borisov	OV	2014.	State-of-the-Art	and	Emerging	
Technologies	for	Therapeutic	Monoclonal	Antibody	Characterization	Volume	1.	
Monoclonal	Antibody	Therapeutics:	Structure,	Function,	and	Regulatory	Space	
Preface.	State-of-the-Art	and	Emerging	Technologies	for	Therapeutic	Monoclonal	
Antibody	Characterization,	Vol	1	-	Monoclonal	Antibody	Therapeutics:	Structure,	
Function,	and	Regulatory	Space		1176:Ix-Xi.	
17.	 Joubert	MK,	Luo	QZ,	Nashed-Samuel	Y,	Wypych	J,	Narhi	LO	2011.	
Classification	and	Characterization	of	Therapeutic	Antibody	Aggregates.	J	Biol	Chem		
286(28):25118-25133.	
18.	 International	Association	for	the	Properties	of	Water	and	Steam.	IAPWS	
Formulation	2008	for	the	Viscosity	of	Ordinary	Water	Substance	ed.,	
http://www.iapws.org/relguide/visc.pdf.	
19.	 Cavicchi	RE,	Collett	C,	Telikepalli	S,	Hu	Z,	Carrier	M,	Ripple	DC	2017.	Variable	
Threshold	Method	for	Determining	the	Boundaries	of	Imaged	Subvisible	Particles.	J	
Pharm	Sci		106(6):1499-1507.	
20.	 Schindelin	J,	Arganda-Carreras	I,	Frise	E,	Kaynig	V,	Longair	M,	Pietzsch	T,	
Preibisch	S,	Rueden	C,	Saalfeld	S,	Schmid	B,	Tinevez	JY,	White	DJ,	Hartenstein	V,	
Eliceiri	K,	Tomancak	P,	Cardona	A	2012.	Fiji:	an	open-source	platform	for	biological-
image	analysis.	Nat	Methods		9(7):676-682.	
21.	 Collins	TJ	2007.	ImageJ	for	microscopy.	Biotechniques		43(1):25-+.	
22.	 Tinevez	JY,	Perry	N,	Schindelin	J,	Hoopes	GM,	Reynolds	GD,	Laplantine	E,	
Bednarek	SY,	Shorte	SL,	Eliceiri	KW	2017.	TrackMate:	An	open	and	extensible	
platform	for	single-particle	tracking.	Methods		115:80-90.	



23.	 Savin	T,	Doyle	PS	2007.	Statistical	and	sampling	issues	when	using	multiple	
particle	tracking.	Phys	Rev	E		76(2).	
24.	 Michalet	X	2010.	Mean	square	displacement	analysis	of	single-particle	
trajectories	with	localization	error:	Brownian	motion	in	an	isotropic	medium.	Phys	
Rev	E		82(4).	
25.	 Ernst	D,	Kohler	J	2013.	Measuring	a	diffusion	coefficient	by	single-particle	
tracking:	statistical	analysis	of	experimental	mean	squared	displacement	curves.	
Phys	Chem	Chem	Phys		15(3):845-849.	
26.	 Brenner	H	1962.	Effect	of	Finite	Boundaries	on	the	Stokes	Resistance	of	an	
Arbitrary	Particle.	J	Fluid	Mech		12(1):35-48.	
27.	 Leith	D	1987.	Drag	on	Nonspherical	Objects.	Aerosol	Sci	Tech		6(2):153-161.	
28.	 Ripple	DC,	Hu	ZS	2016.	Correcting	the	Relative	Bias	of	Light	Obscuration	and	
Flow	Imaging	Particle	Counters.	Pharm	Res-Dordr		33(3):653-672.	
29.	 Zolls	S,	Gregoritza	M,	Tantipolphan	R,	Wiggenhorn	M,	Winter	G,	Friess	W,	
Hawe	A	2013.	How	subvisible	particles	become	invisible-relevance	of	the	refractive	
index	for	protein	particle	analysis.	J	Pharm	Sci		102(5):1434-1446.	
30.	 Wang	C,	Zhong	X,	Ruffner	DB,	Stutt	A,	Philips	LA,	Ward	MD,	Grier	DG	2016.	
Holographic	Characterization	of	Protein	Aggregates.	J	Pharm	Sci-Us		105(3):1074-
1085.	
31.	 Zhao	HY,	Brown	PH,	Schuckt	P	2011.	On	the	Distribution	of	Protein	
Refractive	Index	Increments.	Biophys	J		100(9):2309-2317.	

 
 
 
TABLE CAPTIONS 
 
Table 1. Particle type and number of tracks measured.  
 
 
FIGURE CAPTIONS 
 
Figure 1. (a) Schematic of measurement setup. (b) Sample protein aggregate images and 
boundaries defined by the variable threshold algorithm.  

 
Figure 2. Sample particle trajectories of polystyrene microspheres (a-d) and protein 
aggregates (e): (a) 1 µm microspheres, track lengths > 4000 s, (b) 2 µm microspheres, track 
lengths > 2350 s, (c) 3 µm microspheres, track lengths > 700 s, (d) 5 µm microspheres, 
track lengths > 300 s, (e) protein aggregates, track lengths > 200 s. 
 
Figure 3.  Histograms from track measurements of 1 µm microspheres for different track 
length ranges. (a) MSD diameter, (b) average image equivalent circular diameter (ECD), 
and (c) settling velocity. 
 
Figure 4. Histograms from track measurements of 5 µm microspheres for different track 
length ranges.  (a) MSD diameter, (b) average image equivalent circular diameter (ECD), 
and (c) settling velocity. 



 
Figure 5. Histograms of MSD diameter from track measurements of protein aggregates for 
different track length ranges. 
 
Figure 6. Image diameter vs. MSD diameter for polystyrene microspheres and protein 
aggregates. Error bars represent standard error of the mean with number of contributing 
points equal to 3335, 2839, 1268, 4437 for microspheres of nominal diameter 1 µm, 2 µm, 
3 µm, and 5 µm, respectively. Listed are the coefficients for the fits to Equation 9 for the 
microsphere and protein aggregate data. The dashed line indicates the curve dImage =dMSD . 
 
Figure 7. Measured density difference between polystyrene microspheres and water based 
on the calculated MSD diameter (solid circles) and imaged equivalent circular diameter 
(plus symbols). The horizontal line indicates the microsphere manufacturer’s quoted 
density of 1.050 g/cm3. 
 
Figure 8. (a) Measured density difference between protein aggregates and histidine buffer 
(solid squares) and polystyrene microspheres and water (solid circles) vs. MSD diameter. 
Error bars represent for the standard error of the mean for the microspheres listed in Figure 
6. Errors for the protein aggregates also represent the standard error of the mean, with the 
number of contributing points equal to 255, 1644, 499, 121, and 55 for the aggregates in 
median diameter bins 1.37 µm, 2.0 µm, 2.8 µm, 3.8 µm, and 4.9 µm, respectively. (b) The 
density difference between protein aggregates and buffer for the NISTmAb aggregates 
measured by sedimentation (this work, squares), agitated IgG by quantitative phase 
imaging28 (circles), and agitated bovine pancreas insulin by a holographic method 30 
(triangles). 
 
Figure 9. Normalized number of particles vs. density difference for protein aggregates and 
histidine buffer (solid squares) and polystyrene microspheres and water (solid circles). 
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Supplementary: 
This is a set of four computer programs used for data analysis in the paper 
"Measurement of Average Aggregate Density by Sedimentation" by Richard E. 
Cavicchi, 
Jason King, and Dean C. Ripple 
MakeXMLfile.py python program, converts a table of data into xml format for loading 
into Trackmate. Uses data file in csv format containing particle number, Area, Mean 
grayscale value of particle, XM, YM, and Slice for each particle analyzed by Variable 
Threshold or other particle analysis program. 
ExportTracksToXML.java slightly modified version of Trackmate action file to allow 
for 
export of particle grayscale value and radius along with x and y location 
mainjb2.py python program for analyzing tracks to produce MSD diameter, density, 
and 
a number of other particle properties from xml file produced by Trackmate 
setup.py a set of functions used by mainjb2.py 
# -*- coding: utf-8 -*- 
"""PYTHON program "makexmlfile.py". Converts output of FIJI 
ParticleAnalyzer into XML format usable by Trackmate 
Columns are ParticleID Area Mean XM YM Slice, from Area, calculates 
RADIUS, and also supplies Mean (brightness) as'QUALITY' in the output 
XML file 
""" 
import numpy as np 
import sys 
import os 
from xml.etree.ElementTree import ElementTree, XML 
from xml.etree.ElementTree import Element 
from xml.dom import minidom 
import xml.etree.ElementTree as ET 
def prettify(elem): 
"""Return a pretty-printed XML string for the Element. 
""" 
rough_string = ET.tostring(elem, 'utf-8') 
reparsed = minidom.parseString(rough_string) 
return reparsed.toprettyxml(indent=" ") 
fnameprefix = sys.argv[1] 
fname = fnameprefix+'.csv' 
ImageDataName=fnameprefix+'.tif' 
print (os.getcwd()) 
ImageDataFolder=os.getcwd() 
print (ImageDataFolder) 
dtype1= np.dtype({'names': ['ParticleNumber','Area','Mean','XM', 
'YM','Frame'],'formats': [int, int, int, float, float, int]}) 
a=np.loadtxt(fname,dtype=dtype1, delimiter=',',skiprows=1) 
Spotstotal=len(a['Area']) 
Spotsmaxindex=Spotstotal-1 
framestotal=a[Spotsmaxindex]['Frame'] 



print ("number of spots",Spotstotal,"number of frames",framestotal) 
root = Element('TrackMate') 
tree=ElementTree(root) 
model = Element('Model') 
root.append(model) 
root.set('version','2.8.1') 
model.set('spatialunits','pixel') 
model.set('timeunits','frame') 
FeatureDeclarations=ET.SubElement(model,'FeatureDeclarations') 
SpotFeatures=ET.SubElement(FeatureDeclarations,'SpotFeatures') 
featurestr=['QUALITY','POSITION_X','POSITION_Y','POSITION_Z','POSITION 
_T','FRAME','RADIUS','VISIBILITY'] 
namestr=['Quality','X','Y','Z','T','Frame','Radius','Visibility'] 
shortnamestr=['Quality','X','Y','Z','T','Frame','R','Visibility'] 
dimensionstr=['QUALITY','POSITION','POSITION','POSITION','TIME','NONE' 
,'LENGTH','NONE'] 
isintstr=['false','false','false','false','false','true','false','true 
'] 
Feature = [Element('Feature',feature= 
featurestr[i],name=namestr[i],shortname=shortnamestr[i],dimension=dime 
nsionstr[i],isint=isintstr[i])for i in range(8)] 
SpotFeatures.extend(Feature) 
EdgeFeatures=ET.SubElement(FeatureDeclarations,'EdgeFeatures') 
TrackFeatures=ET.SubElement(FeatureDeclarations,'TrackFeatures') 
AllSpots=ET.SubElement(model,'AllSpots') 
AllSpots.set('nspots',str(Spotstotal)) 
s=0 
for i in range(framestotal): 
spotsinf=0 
shold=s 
while (a[s]['Frame']== i+1) and s<Spotsmaxindex: 
spotsinf+=1 
s=s+1 
SpotsInFrame=ET.SubElement(AllSpots,'SpotsInFrame') 
SpotsInFrame.set('frame',str(a[s-1]['Frame']-1)) 
Spot = [Element('Spot',ID=str(a[j] 
['ParticleNumber']),VISIBILITY=str(1),POSITION_T=str(a[j] 
['Frame']-1),POSITION_Z=str(0),POSITION_Y=str(a[j] 
['YM']),RADIUS=str(np.sqrt(a[j]['Area']/np.pi)),FRAME=str(a[j] 
['Frame']-1), POSITION_X=str(a[j]['XM']),QUALITY=str(a[j]['Mean'])) 
for j in range(shold,shold+spotsinf)] 
SpotsInFrame.extend(Spot) 
AllTracks=ET.SubElement(model,'AllTracks') 
FilteredTracks=ET.SubElement(model,'FilteredTracks') 
Settings = Element('Settings') 
root.append(Settings) 
ImageData=Element('ImageData',filename=ImageDataName, 
folder=ImageDataFolder, width='1280', height='960', nslices='1', 
nframes=str(framestotal), pixelwidth='1.0', pixelheight='1.0', 



voxeldepth='1.0', timeinterval='1.0') 
Settings.append(ImageData) 
BasicSettings=Element('BasicSettings',xstart='0', xend='1279', 
ystart='0', yend='959', zstart='0', zend='0', tstart='0', 
tend=str(framestotal-1)) 
Settings.append(BasicSettings) 
DetectorSettings=Element('DetectorSettings',DETECTOR_NAME='LOG_DETECTO 
R', TARGET_CHANNEL='1', RADIUS='9.0', THRESHOLD='4.0', 
DO_MEDIAN_FILTERING='false', DO_SUBPIXEL_LOCALIZATION='true') 
Settings.append(DetectorSettings) 
InitialSpotFilter=Element('InitialSpotFilter',feature='QUALITY', 
value='0.0', isabove='true') 
Settings.append(InitialSpotFilter) 
SpotFilterCollection=ET.SubElement(Settings,'SpotFilterCollection') 
TrackerSettings=ET.SubElement(Settings,'TrackerSettings') 
TrackFilterCollection=ET.SubElement(Settings,'TrackFilterCollection') 
AnalyzerCollection=ET.SubElement(Settings,'AnalyzerCollection') 
SpotAnalyzers=ET.SubElement(AnalyzerCollection,'SpotAnalyzers') 
SpotAnstr=['MANUAL_SPOT_COLOR_ANALYZER','Spot descriptive 
statistics','Spot radius estimator','Spot contrast and SNR'] 
Analyzer = [Element('Analyzer',key= SpotAnstr[i])for i in range(4)] 
SpotAnalyzers.extend(Analyzer) 
EdgeAnalyzers=ET.SubElement(AnalyzerCollection,'EdgeAnalyzers') 
EdgeAnstr=['Edge target','Edge mean location','Edge 
velocity','MANUAL_EDGE_COLOR_ANALYZER'] 
Analyzer = [Element('Analyzer',key= EdgeAnstr[i])for i in range(4)] 
EdgeAnalyzers.extend(Analyzer) 
TrackAnalyzers=ET.SubElement(AnalyzerCollection,'TrackAnalyzers') 
TrackAnstr=['Branching analyzer','Track duration','Track index','Track 
location','Velocity','TRACK_SPOT_QUALITY'] 
Analyzer = [Element('Analyzer',key= TrackAnstr[i])for i in range(6)] 
TrackAnalyzers.extend(Analyzer) 
GUIState = Element('GUIState') 
GUIState.set('state','ChooseTracker') 
View=ET.SubElement(GUIState,'View') 
View.set('key','HYPERSTACKDISPLAYER') 
root.append(GUIState) 
yy= prettify(root) 
#print yy 
fname = fnameprefix +'.xml' 
ftest = open(fname,"w") 
ftest.write(yy) 
ftest.close() 
#f.close() 
package fiji.plugin.trackmate.action; 
import fiji.plugin.trackmate.Logger; 
import fiji.plugin.trackmate.Model; 
import fiji.plugin.trackmate.Settings; 
import fiji.plugin.trackmate.Spot; 



import fiji.plugin.trackmate.TrackMate; 
import fiji.plugin.trackmate.gui.TrackMateGUIController; 
import fiji.plugin.trackmate.gui.TrackMateWizard; 
import fiji.plugin.trackmate.io.IOUtils; 
import fiji.plugin.trackmate.util.TMUtils; 
import java.io.File; 
import java.io.FileNotFoundException; 
import java.io.FileOutputStream; 
import java.io.IOException; 
import java.util.Set; 
import java.util.TreeSet; 
import javax.swing.ImageIcon; 
import org.jdom2.Document; 
import org.jdom2.Element; 
import org.jdom2.output.Format; 
import org.jdom2.output.XMLOutputter; 
import org.scijava.plugin.Plugin; 
/* 
* PYTHON program. Modified version of ExportTracksToXML that 
allows the export of particle mean brightness (as QUALITY) and 
particle *particle radius as RADIUS. 
These values are supplied to trackmate as a file in "LOAD a Trackmate 
File" 
*/ 
public class ExportTracksToXML extends AbstractTMAction { 
public static final ImageIcon ICON = new 
ImageIcon(TrackMateWizard.class.getResource("images/page_save.png")); 
public static final String NAME = "Export tracks to XML file"; 
public static final String KEY = 
"EXPORT_TRACKS_TO_XML_SIMPLE"; 
public static final String INFO_TEXT = "<html>" + 
"Export the tracks in the current 
model content to a XML " + 
"file in a simple format. " + 
"<p> " + 
"The file will have one element per 
track, and each track " + 
"contains several spot elements. 
These spots are " + 
"sorted by frame number, and have 4 
numerical attributes: " + 
"the frame number this spot is in, 
and its X, Y, Z position in " + 
"physical units as specified in the 
image properties. " + 
"<p>" + 
"As such, this format <u>cannot</u> 
handle track merging and " + 
"splitting properly, and is suited 



only for non-branching tracks." + 
"</html>"; 
private final TrackMateGUIController controller; 
/* 
* CONSTRUCTOR 
*/ 
public ExportTracksToXML( final TrackMateGUIController 
controller ) 
{ 
this.controller = controller; 
} 
/* 
* METHODS 
*/ 
/** 
* Static utility that silently exports tracks in a simplified 
xml format, 
* describe in this class. 
* 
* @param model 
* the {@link Model} that contains the tracks to 
export. 
* @param settings 
* a {@link Settings} object, only used to read its 
* {@link Settings#dt} field, the frame interval. 
* @param file 
* the file to save to. 
* @throws FileNotFoundException 
* if the target file cannot be written. 
* @throws IOException 
* if there is a problem writing the file. 
*/ 
public static void export(final Model model, final Settings 
settings, final File file) throws FileNotFoundException, IOException { 
final Element root = marshall(model, settings, 
Logger.VOID_LOGGER); 
final Document document = new Document(root); 
final XMLOutputter outputter = new 
XMLOutputter(Format.getPrettyFormat()); 
outputter.output(document, new 
FileOutputStream(file)); 
} 
@Override 
public void execute(final TrackMate trackmate) { 
logger.log("Exporting tracks to simple XML format. 
\n"); 
final Model model = trackmate.getModel(); 
final int ntracks = 
model.getTrackModel().nTracks(true); 



if (ntracks == 0) { 
logger.log("No visible track found. Aborting. 
\n"); 
return; 
} 
logger.log(" Preparing XML data.\n"); 
final Element root = marshall(model, 
trackmate.getSettings(), logger); 
File folder; 
try { 
folder = new 
File(trackmate.getSettings().imp.getOriginalFileInfo().directory); 
} catch (final NullPointerException npe) { 
folder = new 
File(System.getProperty("user.dir")).getParentFile().getParentFile(); 
} 
File file; 
try { 
String filename = 
trackmate.getSettings().imageFileName; 
final int dot = filename.indexOf("."); 
filename = dot < 0 ? filename : 
filename.substring(0, dot); 
file = new File(folder.getPath() + 
File.separator + filename +"_Tracks.xml"); 
} catch (final NullPointerException npe) { 
file = new File(folder.getPath() + 
File.separator + "Tracks.xml"); 
} 
file = IOUtils.askForFileForSaving(file, 
controller.getGUI(), logger); 
if (null == file) { 
return; 
} 
logger.log(" Writing to file.\n"); 
final Document document = new Document(root); 
final XMLOutputter outputter = new 
XMLOutputter(Format.getPrettyFormat()); 
try { 
outputter.output(document, new 
FileOutputStream(file)); 
} catch (final FileNotFoundException e) { 
logger.error("Trouble writing to "+file+":\n" 
+ e.getMessage()); 
} catch (final IOException e) { 
logger.error("Trouble writing to "+file+":\n" 
+ e.getMessage()); 
} 
logger.log("Done.\n"); 



} 
private static Element marshall(final Model model, final 
Settings settings, final Logger logger) { 
logger.setStatus("Marshalling..."); 
final Element content = new Element(CONTENT_KEY); 
content.setAttribute(NTRACKS_ATT, 
""+model.getTrackModel().nTracks(true)); 
content.setAttribute(PHYSUNIT_ATT, 
model.getSpaceUnits()); 
content.setAttribute(FRAMEINTERVAL_ATT, 
""+settings.dt); 
content.setAttribute(FRAMEINTERVALUNIT_ATT, 
""+model.getTimeUnits()); 
content.setAttribute(DATE_ATT, 
TMUtils.getCurrentTimeString()); 
content.setAttribute(FROM_ATT, 
TrackMate.PLUGIN_NAME_STR + " v" + TrackMate.PLUGIN_NAME_VERSION); 
final Set<Integer> trackIDs = 
model.getTrackModel().trackIDs(true); 
int i = 0; 
for (final Integer trackID : trackIDs) { 
final Set<Spot> track = 
model.getTrackModel().trackSpots(trackID); 
final Element trackElement = new 
Element(TRACK_KEY); 
trackElement.setAttribute(NSPOTS_ATT, 
""+track.size()); 
// Sort them by time 
final TreeSet<Spot> sortedTrack = new 
TreeSet<Spot>(Spot.timeComparator); 
sortedTrack.addAll(track); 
for (final Spot spot : sortedTrack) { 
final int frame = 
spot.getFeature(Spot.FRAME).intValue(); 
final double x = 
spot.getFeature(Spot.POSITION_X); 
final double y = 
spot.getFeature(Spot.POSITION_Y); 
final double z = 
spot.getFeature(Spot.RADIUS); 
final double ii = 
spot.getFeature(Spot.QUALITY); 
final Element spotElement = new 
Element(SPOT_KEY); 
spotElement.setAttribute(T_ATT, 
""+frame); 
spotElement.setAttribute(X_ATT, 
""+x); 
spotElement.setAttribute(Y_ATT, 



""+y); 
spotElement.setAttribute(Z_ATT, 
""+z); 
spotElement.setAttribute(I_ATT, 
""+ii); 
trackElement.addContent(spotElement); 
} 
content.addContent(trackElement); 
logger.setProgress(i++ / (0d + 
model.getTrackModel().nTracks(true))); 
} 
logger.setStatus(""); 
logger.setProgress(1); 
return content; 
} 
/* 
* XML KEYS 
*/ 
private static final String CONTENT_KEY = "Tracks"; 
private static final String DATE_ATT = 
"generationDateTime"; 
private static final String PHYSUNIT_ATT = "spaceUnits"; 
private static final String FRAMEINTERVAL_ATT = 
"frameInterval"; 
private static final String FRAMEINTERVALUNIT_ATT = 
"timeUnits"; 
private static final String FROM_ATT = "from"; 
private static final String NTRACKS_ATT = 
"nTracks"; 
private static final String NSPOTS_ATT = "nSpots"; 
private static final String TRACK_KEY = "particle"; 
private static final String SPOT_KEY = "detection"; 
private static final String X_ATT = "x"; 
private static final String Y_ATT = "y"; 
private static final String Z_ATT = "z"; 
private static final String T_ATT = "t"; 
private static final String I_ATT = "i"; 
@Plugin( type = TrackMateActionFactory.class ) 
public static class Factory implements TrackMateActionFactory 
{ 
@Override 
public String getInfoText() 
{ 
return INFO_TEXT; 
} 
@Override 
public String getName() 
{ 
return NAME; 



} 
@Override 
public String getKey() 
{ 
return KEY; 
} 
@Override 
public TrackMateAction create( final 
TrackMateGUIController controller ) 
{ 
return new ExportTracksToXML( controller ); 
} 
@Override 
public ImageIcon getIcon() 
{ 
return ICON; 
} 
} 
} 
# -*- coding: utf-8 -*- 
# mainjb2.py program for analyzing tracks supplied by xml file from 
trackmate 
# and tstamp file made (two columns, frame, timestamp) 
import xml.etree.ElementTree as ET 
import sys 
import math 
import csv 
import pandas as pd 
from scipy.optimize import curve_fit 
from setup import stick_check 
from setup import calc_dia 
from setup import offset 
from setup import StandardError 
from setup import calc_density 
from setup import np 
def linear_func(t, D, b): 
return D*t + b 
def get_msd_point(df): 
return pd.Series(data=[df['sd'].mean(), df.shape[0]], 
index=['msd', 'count']) 
def get_msd(x, y, t, min_delta=1, max_delta=None): 
'''Return msd points binned by time intervals calculated from 
timestamps.''' 
result = [] 
if not max_delta: 
max_delta = x.shape[0] 
for delta in np.arange(min_delta, max_delta): 
pos = 0 
while pos + delta < int(x.shape[0]): 



dx2 = np.power(x[pos+delta] - x[pos], 2) 
dy2 = np.power(y[pos+delta] - y[pos], 2) 
dr2 = dx2 + dy2 
dt = t[pos+delta] - t[pos] 
result.append([delta, dr2, dt]) 
pos += 1 
result = np.array(result) 
# Bin squared displacements by dt and calc msd points 
df = pd.DataFrame(result, columns=['delta','sd','dt']) 
df = 
df.groupby(df['dt'].round(6)).apply(get_msd_point).reset_index() 
return df 
def process_track(x, y, t, min_delta=1, max_delta=10): 
'''Return diffusion coefficient from particle track data.''' 
df = get_msd(x, y, t, min_delta, max_delta) 
msd = df['msd'].values 
dt = df['dt'].values 
sigma = (df['count'].max()/df['count']).values 
# Fit line to msd points weighted by bin population 
popt, pcov = curve_fit(linear_func, dt, msd, sigma=sigma) 
return popt[0]/4 
fname = sys.argv[1] 
fnamets = fname[:(fname.find("_"))]+'TstampO.csv' 
reader = csv.DictReader(open(fnamets)) 
dtype1= np.dtype({'names': ['Frame','Tstamp'],'formats': [int, 
float]}) 
frmtim=np.loadtxt(fnamets,dtype=dtype1, delimiter=',',skiprows=0) 
prefix=fname[:5]+'_' 
#%% 
## Set experimental parameters 
nMin = 50 
T = 273.15 + 26.4 
eta = 0.0071137-2.0857e-5*T 
scale = 0.28 
dt = 1/.976 
# time interval in seconds5 
## These parameters should set to True if a drift velocity is present 
## I recommend leaving y_drift as True for sedimentation experiments. 
x_drift = False 
y_drift = True 
#%% 
## Read datafile and scale x-, y-, and t- measurements 
print ('Reading datafile and scaling measurements.') 
tree = ET.parse(fname) 
root = tree.getroot() 
data = [] 
nTracks = np.int(root.attrib['nTracks']) 
idx = 0 
for j in range(nTracks): 



Track = j+1 
nSpots = np.int(root[j].attrib['nSpots']) 
# print nSpots 
for i in range(nSpots): 
time = np.float(root[j][i].attrib['t']) 
x = np.float(root[j][i].attrib['x']) 
y = np.float(root[j][i].attrib['y']) 
z = np.float(root[j][i].attrib['z']) 
i = np.float(root[j][i].attrib['i']) 
data.append([x, y, z, i,time, Track]) 
idx += 1 
data = np.array(data) 
##data[:,4] *= dt 
data[:,0:2] *= scale 
data[:,2] *= 2*scale 
## Step through individual tracks and perform msd analysis 
## The length parameter is the length number of points in the msd 
curve used for fitting to determine diff const 
Aparticle=[] 
An_orig=[] 
An=[] 
Ax_0=[] 
Ay_0=[] 
At_0=[] 
AdiaMIN=[] 
AdiaMAX=[] 
AdiaMED=[] 
AdiaMaxInten=[] 
AintMED=[] 
AMaxIntenFrame=[] 
Adia=[] 
Adia_error=[] 
Av_drift=[] 
Av_drift_error=[] 
Avx=[] 
Adensity_MIN =[] 
Adensity_MaxInten =[] 
Adensity_MED =[] 
Adensity_msd=[] 
Adensity_msd_error=[] 
## A length of 10 gives good results for 1 um - 10 um diameter 
particles 
length = 10 
particle=1 
particles = np.unique(data[:,-1]) 
f = open(fname.split('.')[0] + '_out.csv', 'w') 
#f.write('Track #, Length, Final_Length, x, y, t, 
dia_fc,diaMED,diaMaxInten,MaxIntenFrame, dia_msd,\ 
# dia_msd_error, v_drift, density_MaxInten , density_msd, 



density_msd_error\n') 
f.write(prefix+'Track #,'+ prefix+'Length,'+ prefix+'Final_Length,'+ 
prefix+'x,'+ prefix+'y,'+ prefix+'t,'+ prefix+'intMED,'+ 
prefix+'diaMIN,'+ 
prefix+'diaMAX,'+prefix+'diaMED,'+prefix+'diaMaxInten,'+prefix+'MaxInt 
enFrame,'+ prefix+'dia_msd,'+prefix+'dia_msd_error,'+ 
prefix+'v_drift,'+ prefix+'v_drift_error,'+ prefix+'vx,'+ 
prefix+'density_diaMIN,'+ prefix+'density_diaMED,'+ 
prefix+'density_MaxInten,'+ prefix+'density_msd,'+ 
prefix+'density_msd_error\n') 
for particle in particles: 
print ('{:d}'.format(int(particle))) 
## Find all positions for a given run. 
idx = np.where(data[:,-1] == particle)[0] 
dia_fc = data[idx, 2] 
i_fc = data[idx, 3] 
x = data[idx, 0] 
y = data[idx, 1] 
t = data[idx, 4] 
tframe = t.astype(int) 
lentfr=len(tframe) 
t_0 = tframe[0] 
for j,tfrm in enumerate(tframe): 
i=0 
while (frmtim[tfrm+i]['Frame'] != tfrm) : 
i += 1 
if ((i+tfrm)>lentfr-1): 
break 
t[j] = frmtim[tfrm+i]['Tstamp'] 
## print("j",j,"i",i,"tfrm",tfrm,"t",t[j]) 
## print(tframe[0],t[0]) 
## print(lentfr-1,tframe[lentfr-1],t[lentfr-1]) 
n_orig = x.size 
## Determine if particle is stuck or sticks during the run. 
## If it sticks, truncate the run to the point in time where it 
sticks. 
a = stick_check(x, y, length = 6, threshold = 0.28) 
if a: 
## Modify this programe, if particle is stuck truncate all so track 
will be excluded 
## x = x[:a[0]] 
## y = y[:a[0]] 
## t = t[:a[0]] 
## i_fc=i_fc[:a[0]] 
x = x[:1] 
## Check the length of the truncated/untruncated run. Only perform 
msd 
## analysis on runs that equal or exceed nMin. 
n = x.size 



if n >= nMin: 
x_0 = x[0]/scale 
y_0 = y[0]/scale 
## t_0 = int(t[0]/dt) 
## This is specifically for settling experiments. Calculate 
the 
## average y-velocity over the entire run. 
## v_drift = (y[-1] - y[0])/(t[-1] - t[0]) 
v_drift,b = np.polyfit(t, y, 1) 
## Compensate for a steady drift velocity if flagged. This is 
very 
## important. If drift velocity is present and not corrected 
for, msd 
## analysis WILL fail. 
if x_drift == True: 
x = offset(x, t) 
if y_drift == True: 
y = offset(y, t) 
diff_const = process_track(x, y, t, min_delta=1, 
max_delta=length) 
dia = calc_dia(diff_const, eta, T) 
diff_length = math.sqrt(2*diff_const*(t[-1] - t[0])) 
v_drift_error = diff_length/(t[-1] - t[0]) 
vx = (x[-1] - x[0])/(t[-1] - t[0]) 
SE = StandardError(diff_const, x, length-1) 
dia_error = np.abs(calc_dia(diff_const + SE, eta, T) - dia) 
##wall effect correction factor wallfact 
wallfact = 1/(1-dia/50) 
## Calculate density from both the flowcam-reported diameter 
(the 
## minimum value of all reported diameters for the run) and 
the 
## msd-derived diameter 
density_msd = calc_density(dia, v_drift, eta) 
density_msd *= wallfact 
dia /= wallfact 
density_msd_error = np.abs(calc_density(dia + dia_error, 
v_drift+v_drift_error, eta) - density_msd) 
MaxIntenFrame= np.argmax(i_fc) 
diaMaxInten=dia_fc[MaxIntenFrame] 
diaMED=np.median(dia_fc) 
diaMIN = np.min(dia_fc) 
diaMAX = np.max(dia_fc) 
intMED = np.median(i_fc) 
density_MaxInten = calc_density(diaMaxInten, v_drift, eta) 
density_Med = calc_density(diaMED, v_drift, eta) 
density_Min = calc_density(diaMIN, v_drift, eta) 
Aparticle.append(particle) 
An_orig.append(n_orig) 



An.append(n) 
Ax_0.append(x_0) 
Ay_0.append(y_0) 
At_0.append(t_0) 
AintMED.append(intMED) 
AdiaMIN.append(diaMIN) 
AdiaMAX.append(diaMAX) 
AdiaMED.append(diaMED) 
AdiaMaxInten.append(diaMaxInten) 
AMaxIntenFrame.append(MaxIntenFrame) 
Adia.append(dia) 
Adia_error.append(dia_error) 
Av_drift.append(v_drift) 
Av_drift_error.append(v_drift_error) 
Avx.append(vx) 
Adensity_MaxInten.append(density_MaxInten ) 
Adensity_MIN.append(density_Min ) 
Adensity_MED.append(density_Med ) 
Adensity_msd.append(density_msd) 
Adensity_msd_error.append(density_msd_error) 
# f.write('%d, %d, %d, %0.3f, %0.3f, %d, %0.3f,%0.3f, %0.3f, 
%d, %0.3f, %0.3f, %0.3f,\ 
# %0.3f, %0.3f, %0.3f\n' % (particle, n_orig, n, x_0, 
y_0,\ 
# t_0, diaMIN,diaMED, diaMaxInten,MaxIntenFrame,dia, 
dia_error, v_drift, density_MaxInten ,\ 
# density_msd, density_msd_error)) 
# print (diff_const) 
else: 
print ('Track too short.') 
q=len(At_0) 
for j in range(q): 
idx = np.argsort(Adia) 
Aparticle = np.array(Aparticle)[idx] 
An_orig= np.array(An_orig)[idx] 
An= np.array(An)[idx] 
Ax_0= np.array(Ax_0)[idx] 
Ay_0= np.array(Ay_0)[idx] 
At_0= np.array(At_0)[idx] 
AdiaMIN= np.array(AdiaMIN)[idx] 
AdiaMAX= np.array(AdiaMAX)[idx] 
AdiaMED= np.array(AdiaMED)[idx] 
AdiaMaxInten= np.array(AdiaMaxInten)[idx] 
AMaxIntenFrame= np.array(AMaxIntenFrame)[idx] 
Adia= np.array(Adia)[idx] 
Adia_error= np.array(Adia_error)[idx] 
Av_drift= np.array(Av_drift)[idx] 
Av_drift_error= np.array(Av_drift_error)[idx] 
Avx= np.array(Avx)[idx] 



Adensity_MIN = np.array(Adensity_MIN)[idx] 
Adensity_MED = np.array(Adensity_MED)[idx] 
Adensity_MaxInten = np.array(Adensity_MaxInten)[idx] 
Adensity_msd= np.array(Adensity_msd)[idx] 
Adensity_msd_error= np.array(Adensity_msd_error)[idx] 
f.write ('%d, %d, %d, %0.3f,%0.3f, %d, %d, %0.3f,%0.3f,%0.3f, 
%0.3f, %d,%0.3f, %0.3f, %0.3f, %0.3f,%0.3f,%0.3f, %0.3f, %0.3f, %0.3f, 
%0.3f\n'\ 
% (Aparticle[j], An_orig[j], An[j], 
Ax_0[j],Ay_0[j],At_0[j],AintMED[j], AdiaMIN[j], AdiaMAX[j],AdiaMED[j], 
AdiaMaxInten[j],\ 
AMaxIntenFrame[j],Adia[j],Adia_error[j], Av_drift[j], 
Av_drift_error[j],Avx[j], Adensity_MIN [j],Adensity_MED 
[j],Adensity_MaxInten [j],Adensity_msd[j], Adensity_msd_error[j])) 
f.close() 
# -*- coding: utf-8 -*- 
#This is setup.py a set of python functions used by the main program 
for analyzing tracks 
import numpy as np 
import scipy.stats 
from scipy import constants 
def split_array(x, length, stagger): 
""" 
split array x in chunks of length with stagger (amount of overlap) 
""" 
L = [x[i:i+length] for i in range(0,len(x),int(stagger))] 
L = [xx for xx in L if len(xx)==length] 
return np.array(L) 
def stick_check(x, y, length = 6, threshold = 0.1): 
xs = split_array(x, length, 1) 
ys = split_array(y, length, 1) 
idx = [] 
for i in range(len(xs)): 
dx = xs[i] - xs[i][0] 
dy = ys[i] - ys[i][0] 
if np.all(np.abs(dx) < threshold) and np.all(np.abs(dy) < 
threshold): 
idx.append(i) 
return idx 
def calc_dia(D, eta = 0.00089, T = 298.15): 
''' 
Calculate hydrodynamic diameter from Stokes-Einstein equation. 
Needs diffusion coefficient, dynamic viscosity [N*s/m^2], and 
temperature [K]. 
''' 
D *= 1E-12 # m^2/s 
r = constants.k*T/(6*constants.pi*eta*D) 
result = 2*r*1E6 # microns 
return result 



def offset(y, t): 
v_avg = (y[-1] - y[0])/(t[-1] - t[0]) 
result = y - v_avg*t 
return result 
def StandardError(D, x, n):#, conf=0.95, ddof=1): 
""" 
Calculate the standard error over track. 
""" 
SE = D*np.sqrt((2*n)/(3*(x.shape[0]-n))) 
return SE 
def calc_density(d, v_drift, eta = 0.00089): 
''' 
Returns delta rho. 
Needs a hydrodynamic diameter [μm], average velocity [μm/s], and 
dynamic viscosity [N*s/m^2]. 
''' 
r = 0.5*d 
r *= 1E-6 # m 
v_drift *= 1E-6 # m/s 
result = (9*eta*v_drift)/(2*constants.g*r**2) 
return result 


